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The standards for grades eight through twelve are organized differently from those 

for kindergarten through grade seven. (A complete description of this organization is 

provided on page 72, “Introduction to Grades Eight Through Twelve.”) In grades 

eight through twelve, the mathematics studied is organized according to disciplines 

such as algebra and geometry. Local educational agencies may choose to teach 

high school mathematics in a traditional sequence of courses (Algebra I, geometry, 

Algebra II, and so forth) or in an integrated fashion in which some content from each 

discipline is taught each year. 

However mathematics courses are organized, the core content of these subjects 

must be covered by the end of the sequences of courses, and all academic 

standards for achievement must be the same. The core content and the emphasis 

areas are delineated in the discussions of the individual disciplines presented in this 

section. 

What follows in this preface is a discussion of key standards and discipline-level 

emphases for Algebra I, geometry, Algebra II, and probability and statistics. These 

same disciplines will be tested under the statewide Standardized Testing and 

Reporting (STAR) program, which will offer both traditional discipline-based versions 

and integrated versions of its test. The following section describes standards for the 

academic content by discipline, along with the areas of emphasis in each discipline; 

it is not an endorsement of a particular choice of structure for courses or a particular 

method of teaching the mathematical content. The additional advanced subjects of 

mathematics covered in the standards (linear algebra, advanced placement 

probability and statistics, and calculus) are not discussed in this section because 

many of these advanced subjects are not taught in every middle school or high 
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school. Schools and districts may combine the subject matter of these various 

disciplines. Many combinations of these subjects are possible, and this framework 

does not prescribe a single instructional approach. 

By the eighth grade, students’ mathematical sensitivity should be sharpened. 

Students should start perceiving logical subtleties and appreciating the need for 

sound mathematical arguments before making conclusions. As students progress in 

the study of mathematics, they learn to understand the meaning of logical 

implication; test general assertions; realize that one counterexample is enough to 

show that a general assertion is false; conceptually understand that the truth of a 

general assertion in a few cases does not allow the conclusion that it is true in all 

cases; distinguish between something being proven and a mere plausibility 

argument; and identify logical errors in chains of reasoning. 

From kindergarten through grade seven, these standards have impressed on the 

students the importance of logical reasoning in mathematics. Starting with grade 

eight, students should be ready for the basic message that logical reasoning is the 

underpinning of all mathematics. In other words, every assertion can be justified by 

logical deductions from previously known facts. Students should begin to learn to 

prove every statement they make. Every textbook or mathematics lesson should try 

to convey this message and to convey it well. 

[For information on problems from the Third International Study of Mathematics and 

Science (TIMSS), readers are referred to a resource kit, Attaining Excellence: A TIMSS 

Resource Kit, and to a Web site http://www.csteep.bc.edu/TIMSS1/pubs_main.html.] 

Mathematical Proofs 

A misapprehension in mathematics education is that proofs occur only in 

Euclidean geometry and that elsewhere one merely learns to solve problems and do 

computations. Problem solving and symbolic computations are nothing more than 
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different manifestations of mathematical proofs. To illustrate this point, the following 

discussion shows how the usual computations leading to the solution of a simple 

linear equation are nothing but the steps of a well-disguised proof of a theorem. 

Consider the problem of solving this equation: 

x − 1⁄4(3x − 1) = 2x − 5 

Multiply both sides by 4 to get: 

4x − (3x − 1) = 8x − 20 

Then simplify the left side to get:  

x + 1 = 8x − 20 

Transposing x from left to right yields: 

1 = 7x − 20 

One more transposition, and a division, gives the result x = 3.  

This would seem to be an entirely mechanical procedure that involves no proof 

because both the hypothesis and conclusion are hidden. 

Closer examination reveals that what is really being stated is a mathematical 

theorem: 

A number x satisfies x − 1⁄4(3x −  1) −  2x − 5  

when and only when x = 3. 

That x = 3 satisfies the equation is easy to see. The less trivial part of the preceding 

theorem is the assertion that if a number x satisfies x − 1⁄4(3x − 1) −  2x − 5, then x is 

necessarily equal to 3. A proof of this fact is presented next in a two-column format: 

 1. x − 1⁄4(3x − 1) =  2x − 5 

 2. 4(x − 1⁄4(3x − 1)) = 4(2x − 5) 

 3. 4x −  4(1⁄4(3x − 1)) =  4(2x) − 20 
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 5. 4x − (3x − 1) = 8x − 20 

 6. 4x + (−3x + 1) = 8x − 20  

 7. (4x + (−3x)) + 1 = 8x − 20 

 8. x + 1 = 8x − 20 

 9. −x + (x + 1) = −x + (8x − 20) 

 10. (−x + x) + 1 = (−x + 8x) − 20  

 11. 1 = 7x − 20  

 12. 1 + 20 = (7x −20) + 20 

 13. 21 = 7x + [(−20) + 20] 

 14. 21 = 7x  

 15. 3 = x  

 16. x = 3   

 1. Hypothesis 

 2. a = b implies ca = cb for all numbers a, b, c. 

 3. Distributive law 

 4. Associative law for multiplication 

 5. 1 ⋅ a = a for all numbers a 

 6. −(a − b) = (−a + b) for all numbers a, b. 

 7. Associative law for addition 
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 8. 4x + (−3x) = (4 + (−3))x, by the distributive law 

 9. Equals added to equals are equal. 

 10. Associative law for addition 

 11. −x + 8x = (−1 + 8)x, by the distributive law 

 12. Equals added to equals are equal. 

 13. Associative law for addition 

 14. −a + a =  0 for all a; b + 0 =  b for all b. 

 15. Multiply (14) by 1⁄7 and apply the associative law to 1⁄7(7x). 

 16. a = b implies that b = a Q.E.D. 

The purpose of giving this proof is by no means to suggest that, in school 

mathematics, linear equations should ever be solved in this tedious fashion. Rather, 

the intention is to show that even certain standard procedures that students tend to 

take for granted are nevertheless mathematical proofs in disguise. Furthermore, 

without the realization that such a mathematical proof is lurking behind the well-

known formalism of solving linear equations, an author of an algebra textbook or a 

teacher in a classroom would most likely emphasize the wrong points in the 

presentation of beginning algebra.  

The preceding proof clearly exposes the need for generality in the presentation of 

the associative laws and distributive law. In these standards these laws are taught 

starting with grade two, but it is probably difficult to convince students that such 

seemingly obvious statements deserve discussion. For example, if one has to 

believe that 3(5 + 11) = 3 ⋅ 5 + 3 ⋅ 11, all one has to do is to expand both sides: 

clearly, 3 ⋅ 16 = 15 + 33 because both sides are equal to 48. However, one look at 

the deduction of step 3 from step 2 in the preceding mathematical demonstration 
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would make it clear that the hands-on approach to the distributive law is useless in 

this situation. Begin with the right-hand side of the equation:  

4(2x − 5) = 4(2x) − 4 ⋅ 5  

Here x is an arbitrary number, so we are not saying that  

4(2 ⋅ 17 − 5) = 4(2 ⋅ 17) − 4 ⋅ 5  

or that  

4(2 ⋅ 172 − 5) =  4(2 ⋅ 172) − 4 ⋅ 5 

Were that the case, the equality could again have been verified by expanding both 

expressions. Rather, the assertion is that, although we do not know what number x 

is, nevertheless it is true that 4(2x − 5) = 4(2x) − 4 ⋅ 5. There is no alternative except 

to justify this general statement by using a general rule: the distributive law. The 

same comment applies to the other applications of the associative laws and the 

distributive law in the preceding proof. 

It must be recognized that some proofs may not be accessible until the later 

grades, such as the reason for the formula of the circumference of a circle, C = 2πr. 

Nevertheless, every technique taught in mathematics is nothing but proofs in 

disguise. The validity of this statement can be revealed by considering a special 

case, such as this word problem for grade eight: 

Jan had a bag of marbles. She gave one-half to James and then one-third of the 

marbles still in the bag to Pat. She then had 6 marbles left. How many marbles 

were in the bag to start with? (TIMSS, gr. 8, N-16) 

The solution to the problem follows:  

Suppose Jan had n marbles to start with. If she gave one-half to James, then 

she had n/2 marbles left. According to the problem, she then gave one-third of 

what was left to Pat (i.e., she gave (1⁄3) ⋅ (1⁄2)n to Pat). Thus she gave (1⁄6)n 
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marbles to Pat, and what she had left was (1⁄2)n − (1⁄6)n = (1⁄3)n. But the 

problem states that Jan had “6 marbles left.” So (1⁄3)n = 6, and n = 18. 

Therefore, Jan had 18 marbles to begin with. 
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The next step is to analyze in what sense the preceding solution masks a proof. 

First, the usual solution as presented previously can be broken into two distinct 

steps: 

 1. Setting up the equation: If n is the number of marbles Jan had to begin with, 

then the given data imply: 

(n − (1⁄2)n) − (1⁄3)(n − (1⁄2)n) = 6 

 2. Solving the equation: This step requires the proof of the following theorem:  

n satisfies the equation (1⁄2)n − (1⁄3) (1⁄2)n = 6 when and only when n = 18. 

Step 1 and step 2 exemplify the two components of mathematics in grades eight 

through twelve: teaching the skills needed to transcribe sometimes untidy raw data 

into mathematical terms and teaching the skills needed to draw precise logical 

conclusions from clearly stated hypotheses. Neither can be slighted. 

Misconceptions in Mathematics Problems  

It should be pointed out, however, that the built-in uncertainty and indeterminacy 

of step 1—which can lead to the setting up of several distinct equations and hence 

several distinct solutions—has led to the view of mathematics as an imprecise 

discipline in which a problem may have more than one correct answer. This lack of 

understanding of the sharp distinction between step 1 and step 2 has had the 

deleterious effect of downgrading the importance of obtaining a single correct 

answer and jettisoning the inherent precision of mathematics. As a result the rigor 

and precision needed for step 2 have been vigorously questioned. Such a 

misconception of mathematics would never have materialized had the process of 
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transcription been better understood. This level of rigor and precision is embedded 

in the standards and is essential so that all students can develop mathematically to 

the level required in the Mathematics Content Standards. 

The following is an extreme example of the kind of misconception discussed 

earlier: 

The 20 percent of California families with the lowest annual earnings pay an 

average of 14.1 percent in state and local taxes, and the middle 20 percent pay 

only 8.8 percent. What does that difference mean? Do you think it is fair? What 

additional questions do you have? 

Any attempt to solve this problem would require a missing definition in 

mathematical terms of how to decide what is “fair,” and consideration of much 

unspecified information about taxes and society. Since it is impossible to transcribe 

the problem as stated into mathematics, step 1 (setting up the equation) cannot be 

carried out, and so there can be no step 2 (solving the equation). This is therefore 

not a mathematical problem. Hence, the fact that it has no single correct answer can 

in no way lend credence to the assertion that mathematics is uncertain or imprecise. 

The preceding discussion explains that mathematical proofs are the underpinning 

of all of mathematics. Beginning with grade eight, students must deepen their 

understanding of the essential foundations for reasoning provided by mathematical 

proofs. It would be counterproductive to force every student to write a two-column 

proof at every turn, and it would be equally foolish to require all mathematics 

instructional materials to be as pedantic about giving such details as the two-column 

proof shown earlier in this preface. Nevertheless, the message that proofs underlie 

everything being taught should be clear in the instructional material and 

mathematical lessons taught in grades eight through twelve. In particular, all 

instructional materials—not just those for geometry, but especially those for algebra 
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the situation calls for them. For example, an algebra textbook which asserts that a 

polynomial p(x) satisfying p(a) = 0 for some number a must contain x − a as a factor, 

but which does not offer a detailed proof beyond a few concrete examples for 

corroboration, is not presenting material compatible with the standards. 
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In algebra, students learn to reason symbolically, and the complexity and types of 

equations and problems that they are able to solve increase dramatically as a 

consequence. The key content for the first course, Algebra I, involves 

understanding, writing, solving, and graphing linear and quadratic equations, 

including systems of two linear equations in two unknowns. Quadratic equations 

may be solved by factoring, completing the square, using graphs, or applying the 

quadratic formula. Students should also become comfortable with operations on 

monomial and polynomial expressions. They learn to solve problems employing all 

of these techniques, and they extend their mathematical reasoning in many 

important ways, including justifying steps in an algebraic procedure and checking 

algebraic arguments for validity. 

Transition from Arithmetic to Algebra 

Perhaps the fundamental difficulty for many students making the transition from 

arithmetic to algebra is their failure to recognize that the symbol x stands for a 

number. For example, the equation 3(2x − 5) + 4(x − 2) = 12 simply means that a 

certain number x has the property that when the arithmetic operations 3(2x − 5) + 

4(x − 2) are performed on it as indicated, the result is 12. The problem is to find that 

number (solution). Teachers can emphasize this point by having students perform a 

series of arithmetic computations (using pen and paper) starting with x = 1, x = 2, 

x = 3, x = 4, and so forth, thereby getting −13, −3, 7, 17, and so forth. These 

computations show that none of 1, 2, 3, 4 can be that solution. Going from x = 3 to 

x = 4, the value of the expression changes from 7 to 17; therefore, it is natural to 

guess that the solution would be between 3 and 4. More experimentation eventually 

gives 3.5 as the solution.  
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Working backwards, since 3(2(3.5) −5) + 4((3.5) − 2) = 12, one can apply the 

distributive law and commutative and associative laws to unwind the expression, 

intentionally not multiplying out 2(3.5), 4(3.5), and so forth, to get: 

   
3.5 =

12 + 3(5) + 2(4)
3(2) + 4
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But this is exactly the principle of solving the equation 3(2x − 5) + 4(x − 2) = 12 for 

the number x: 

    
x =

12 + 3(5) + 2(4)
3(2) + 4
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One can bring closure to such a lesson by stressing the similarity between the 

handling of the algebraic equation and the earlier simple arithmetic operations.  

Basic Skills for Algebra I 

The first basic skills that must be learned in Algebra I are those that relate to 

understanding linear equations and solving systems of linear equations. In Algebra I 

the students are expected to solve only two linear equations in two unknowns, but 

this is a basic skill. The following six standards explain what is required: 

4.0 Students simplify expressions before solving linear equations and inequalities 

in one variable, such as 3(2x − 5) + 4(x − 2) = 12.  

5.0 Students solve multi-step problems, including word problems, involving linear 

equations and linear inequalities in one variable and provide justification for 

each step.  

6.0 Students graph a linear equation and compute the x- and y- intercepts (e.g., 

graph 2x + 6y = 4). They are also able to sketch the region defined by linear 

inequality (e.g., they sketch the region defined by 2x + 6y < 4).  

7.0 Students verify that a point lies on a line, given an equation of the line. 

Students are able to derive linear equations by using the point-slope formula. 
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9.0 Students solve a system of two linear equations in two variables algebraically 

and are able to interpret the answer graphically. Students are able to solve a 

system of two linear inequalities in two variables and to sketch the solution 

sets. 
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15.0 Students apply algebraic techniques to solve rate problems, work problems, 

and percent mixture problems. 

Each of these standards can be a source of difficulty for students, but they all 

reflect basic skills that must be understood so that students can advance to the next 

level in their understanding of mathematics. Moreover, modern applications of 

mathematics rely on solving systems of linear equations more than on any other 

single technique that students will learn in kindergarten through grade twelve 

mathematics. Consequently, it is essential that they learn these skills well. 

Point-Slope Formula 

Perhaps the most perplexing difficulty that students have is with Standard 7.0. It 

often seems very hard for them to understand this point. But it is one of the most 

critical skills in this section. In particular, the following idea must be clearly 

understood before the students can progress further: A point lies on a line given by, 

for example, the equation y = 7x + 3 if and only if the coordinates of that point (a, b) 

satisfy the equation when x is replaced with a and y with b. One way of explaining 

this idea is to emphasize that the graph of the equation y = 7x + 3 is precisely the set 

of points (a, b) for which replacing x by a and y by b gives a true statement. (For 

example, (3, 2) is not on the graph because replacing x with 3 and y with 2 gives the 

statement 2 = 23, which is not true.) Thus, the graph consists of all points of the form 

(a, 7a + 3). It also follows from these considerations that the root r of the linear 
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polynomial 7x + 3 is the x-intercept of the graph of y = 7x + 3 because (r, 0) is on the 

graph. 

An additional comment about Standard 7.0 is that, although it singles out the 

point-slope formula, it is understood that students also have to know how to write the 

equation of a line when two of its points are given. However, the fact that the slope 

of a line is the same regardless of which pair of points on the line are used for its 

definition depends on the considerations of similar triangles. (This fact is first 

mentioned in Algebra and Functions Standard 3.3 for grade 7.) This small gap in the 

logical development should be made clear to students, with the added assurance 

that they will learn the concept in geometry. The same comment applies also to the 

fact that two non-vertical lines are perpendicular if and only if the product of their 

slopes is −1 (Standard 8.0). 

Quadratic Equations 

The next basic topic is the development of an understanding of the structure of 

quadratic equations. Here, one repeats the considerations involved in linear 

equations, such as graphing and understanding what it means for a point (x, y) to be 

on the graph. In particular, the graphical interpretation of finding the zeros of a 

quadratic equation by identifying the x-intercepts with the graph is very important 

and, as was the case with linear equations, is also a source of serious difficulty. 

Equally important is the recognition that if a, b are the roots of a quadratic 

polynomial, then up to a multiplicative constant, it is equal to (x − a)(x − b). 

When the discriminant of a quadratic polynomial is negative, the quadratic formula 

yields no information at this point because students have not yet been introduced to 

complex numbers. This deficiency will be remedied in Algebra II. The following 

standards show which skills students in a first-year algebra course need for solving 

quadratic equations: 
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19.0 Students know the quadratic formula and are familiar with its proof by 

completing the square. 

20.0 Students use the quadratic formula to find the roots of a second-degree 

polynomial and to solve quadratic equations. 

21.0 Students graph quadratic functions and know that their roots are the x-

intercepts. 

23.0 Students apply quadratic equations to physical problems, such as the motion 

of an object under the force of gravity. 

Additional Comments 

Students should be carefully guided through the solving of word problems by 

using symbolic notations. Many students may be so overwhelmed by the symbolic 

notation that they start to manipulate symbols carelessly, and word problems 

become incomprehensible. Teachers and publishers need to be sensitive to this 

difficulty. In addition to Standard 15.0, cited previously, the other relevant standards 

for solving word problems using symbolic notations are: 

10.0 Students add, subtract, multiply and divide monomials and polynomials. 

Students solve multistep problems, including word problems, by using these 

techniques. 

13.0 Students add, subtract, multiply, and divide rational expressions and 

functions. Students solve both computationally and conceptually challenging 

problems by using these techniques. 

Among the word problems of this level, those involving direct and inverse 

proportions occupy a prominent place. These concepts, which are often mired in the 

language of “proportional thinking,” need clarification. A quantity P is said to be 

proportional to another quantity Q if the quotient P/Q is a fixed constant k. This k is 
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then called the constant of proportionality. Students should be made aware that this 

is a mathematical definition, and there is no need to look for linguistic subtleties 

concerning the phrase “to be proportional to.” Similarly, P is said to be inversely 

proportional to Q if the product PQ is equal to a fixed nonzero constant h. 

In Standard 13.0 the emphasis should be on formal rational expressions instead of 

on rational functions. Many of these formal techniques will become increasingly 

important in Algebra II and trigonometry. The rules of exponents, for example, are 

fundamental to an understanding of the exponential and logarithmic functions. Many 

students fail to cope with the latter topics because their understanding of the rules of 

(fractional) exponents is weak. The skills in the following standards need to be 

emphasized in a first-year algebra course: 

2.0 Students understand and use such operations as taking the opposite, finding 

the reciprocal, taking a root, and raising to a fractional power. They 

understand and use the rules of exponents. 

12.0 Students simplify fractions with polynomials in the numerator and 

denominator by factoring both and reducing them to the lowest terms. 

The gist of Standards 16.0 through 18.0 is to introduce students to a precise 

concept of functions in the language of ordered pairs. Introducing this concept needs 

to be done carefully because students at this stage of their mathematical 

development may not be ready for this level of abstraction. However, during a first-

year algebra course is the stage at which students should see and use the functional 

notation f(x) for the first time. 

In Standard 24.0 students begin to learn simple logical arguments in algebra. 

They can be taught the proof that square roots of prime numbers are never rational, 

thereby solidifying to a certain extent their understanding of rational and irrational 

numbers (grade seven, Number Sense Standard 1.4). In Standard 3.0 students are 
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satisfies property P} and to the empty set φ in, for example, Standard 17.0. Finally, 
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The main purpose of the geometry curriculum is to develop geometric skills and 

concepts and the ability to construct formal logical arguments and proofs in a 

geometric setting. Although the curriculum is weighted heavily in favor of plane 

(synthetic) Euclidean geometry, there is room for placing special emphasis on 

coordinated geometry and its transformations. 

The first standards introduce students to the basic nature of logical reasoning in 

mathematics: 

1.0 Students demonstrate understanding by identifying and giving examples of 

undefined terms, axioms, theorems, and inductive and deductive reasoning. 

3.0 Students construct and judge the validity of a logical argument and give 

counterexamples to disprove a statement. 

Starting with undefined terms and axioms, students learn to establish the validity 

of other assertions through logical deductions; that is, they learn to prove theorems. 

This is their first encounter with an axiomatic system, and experience shows that 

they do not easily adjust to the demand of total precision needed for the task. In 

general, it is important to impress on students from the beginning that the main point 

of a proof is the mathematical correctness of the argument, not the literary polish of 

the writing or the adherence to a particular proof format. 

Inductive Reasoning 

Standard 1.0 also calls for an understanding of inductive reasoning. Students are 

expected not only to recognize inductive reasoning in a formal sense but also to 

demonstrate how to put it to use. To this end students should be encouraged to 

draw many pictures to develop a geometric sense and to amass a wealth of 
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geometric data in the process. Many students—including high-achieving ones—

complete a course in geometry with so little geometric intuition that, given three 

noncollinear points, they cannot even begin to visualize what the circumcircle of 

these points must be like. One way to develop this geometric sense is to have the 

students become familiar with the basic straightedge-compass constructions, as 

illustrated in the following standard: 

16.0 Students perform basic constructions with a straightedge and compass, such 

as angle bisectors, perpendicular bisectors, and the line parallel to a given 

line through a point off the line. 

It would be desirable to introduce students to these constructions early in the 

course and leave the proofs of their validity to the appropriate place of the logical 

development later. 

Geometric Proofs 

The subject then turns to geometric proofs in earnest. The foundational results of 

plane geometry are embodied in the following standards: 

2.0 Students write geometric proofs, including proofs by contradiction. 

4.0 Students prove basic theorems involving congruence and similarity. 

7.0 Students prove and use theorems involving the properties of parallel lines cut 

by a transversal, the properties of quadrilaterals, and the properties of circles. 

12.0 Students find and use measures of sides and of interior and exterior angles 

of triangles and polygons to classify figures and solve problems. 

21.0 Students prove and solve problems regarding relationships among chords, 

secants, tangents, inscribed angles, and inscribed and circumscribed 

polygons of circles. 
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It has become customary in high school geometry textbooks to start with axioms 

that incorporate real numbers. Although doing geometric proofs with real numbers 

runs counter to the spirit of Euclid, this approach is a good mathematical 

compromise in the context of school mathematics. However, the parallel postulate 

occupies a special place in geometry and should be clearly stated in the traditional 

form: Through a point not on a given line L, there is exactly one line parallel to L. 

Because this postulate played a fundamental role in the development of 

mathematics up to the nineteenth century, the significance of the postulate should 

be discussed. And because there always exists at least one parallel line through a 

point to a given line, the import of this postulate lies in the uniqueness of the parallel 

line. A discussion of this postulate provides a natural context to show students the 

key concept of uniqueness in mathematics—a concept that experience indicates 

students usually find difficult. 

It is also recommended that the topics of circles and similarity be taught as early 

as possible. Once those topics have been presented, the course enters a new phase 

not only because of the interesting theorems that can now be proved but also 

because the concept of similarity expands the applications of algebra to geometry. 

These applications might include determining one side of a regular decagon on the 

unit circle through the use of the quadratic formula as well as the applications of 

geometry to practical problems. 

It is often not realized that theorems for circles can be introduced very early in a 

geometry course. For instance, the remarkable theorem that inscribed angles on a 

circle which intercept equal arcs must be equal can in fact be presented within three 

weeks after the introduction of axioms. All it takes is to prove the following two 

theorems: 

 1. Base angles of isosceles triangles are equal. 
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 2. The exterior angle of a triangle equals the sum of opposite interior angles. 

At this point it is necessary to deal with one of the controversies in mathematics 

education concerning the format of proofs. It has been argued that the traditional 

two-column format is stultifying for students and that the format for proofs in the 

mathematics literature is always paragraph proofs. While the latter observation is 

true, teachers should be aware that a large part of the reason for using paragraph 

proofs is the expense of typesetting more elaborate formats, not that paragraph 

proofs are intrinsically better or clearer. In fact, neither of these claims of superiority 

for paragraph proofs is actually valid. Furthermore, it appears that for beginners to 

learn the precision of argument needed, the two-column format is best. After the 

students have shown a mastery of the basic logical skills, it would be appropriate to 

relax the requirements on form. But the teacher should never relax the requirement 

that all arguments presented by the students be precise and correct. 

Pythagorean Theorem 

One of the high points of elementary mathematics, in fact of all of mathematics, is 

the Pythagorean theorem: 

14.0 Students prove the Pythagorean theorem. 

This theorem can be proved initially by using similar triangles formed by the 

altitude on the hypotenuse of a right triangle. Once the concept of area is introduced 

(Standard 8.0), students can prove the Pythagorean theorem in at least two more 

ways by using the familiar picture of four congruent right triangles with legs a and b 

nestled inside a square of side a + b. 

8.0 Students know, derive, and solve problems involving the perimeter, 

circumference, area, volume, lateral area, and surface area of common 

geometric figures. 
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For rectilinear figures in the plane, the concept of area is simple because 

everything reduces to a union of triangles. However, the course must deal with 

circles, and here limits must be used and the number π defined. The concept of limit 

can be employed intuitively without proofs. If the area or length of a circle is defined 

as the limit of approximating, inscribing, or circumscribing regular polygons, then π is 

either the area of a disk of unit radius or the ratio of circumference to diameter, and 

heuristic arguments (see the glossary) for the equivalence of these two definitions 

would be given.  

The concept of volume, in contrast with that of area, is not simple even for 

polyhedra and should be touched on only lightly and intuitively. However, the 

formulas for volumes and surface areas of prisms, pyramids, cylinders, cones, and 

spheres (Standard 9.0) should be memorized. 

An important aspect of teaching three-dimensional geometry is to cultivate 

students’ spatial intuition. Most students find spatial visualization difficult, which is all 

the more reason to make the teaching of this topic a high priority. 

The basic mensuration formulas for area and volume are among the main 

applications of geometry. However, the Pythagorean theorem and the concept of 

similarity give rise to even more applications through the introduction of 

trigonometric functions. The basic trigonometric functions in the following standards 

should be presented in a geometry course: 

18.0 Students know the definitions of the basic trigonometric functions defined by 

the angles of a right triangle. They also know and are able to use elementary 

relationships between them. For example, tan (x) = sin (x)/cos (x), (sin (x))2 + 

(cos (x))2 = 1. 
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Finally, the Pythagorean theorem leads naturally to the introduction of rectangular 

coordinates and coordinate geometry in general. A significant portion of the 

curriculum can be devoted to the teaching of topics embodied in the next two 

standards: 

17.0 Students prove theorems by using coordinate geometry, including the 

midpoint of a line segment, the distance formula, and various forms of 

equations of lines and circles. 

22.0 Students know the effect of rigid motions on figures in the coordinate plane 

and space, including rotations, translations, and reflections. 

The Connection Between Algebra and Geometry 

These standards lead students to the next level of sophistication: an algebraic and 

transformation-oriented approach to geometry. Students begin to see how algebraic 

concepts add a new dimension to the understanding of geometry and, conversely, 

how geometry gives substance to algebra. Thus straight lines are no longer merely 

simple geometric objects; they are also the graphs of linear equations. Conversely, 

solving simultaneous linear equations now becomes finding the point of intersection 

of straight lines. Another example is the interpretation of the geometric concept of 

congruence in the Euclidean plane as a correspondence under an isometry of the 

coordinate plane. Concrete examples of isometries are studied: rotations, 

reflections, and translations. It is strongly suggested that the discussion be rounded 

off with the proof of the structure theorem: Every isometry of the coordinate plane is 

a translation or the composition of a translation and a rotation or the composition of 

a translation, a rotation, and a reflection. 
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Special attention should be given to the fact that a gap in Algebra I must be filled 

here. Standards 7.0 and 8.0 of Algebra I assert that: 

 

1. The graph of a linear equation is a straight line. 

2. Two straight lines are perpendicular if and only if their slopes have a product 

of −1. 

These facts should now be proved. 

Additional Comments and Cautionary Notes 

This section provides further comments and cautions in presenting the material in 

geometry courses. 

Introduction to Proofs. An important point to make to students concerning proofs 

is that while the written proofs presented in class should serve as models for 

exposition, they should in no way be a model of how proofs are discovered. The 

perfection of the finished product can easily mislead students into thinking that they 

must likewise arrive at their proofs with the same apparent ease. Teachers need to 

make clear to their students that the actual thought process is usually full of false 

starts and that there are many zigzags between promising leads and dead ends. 

Only trial and error can lead to a correct proof. 

This awareness of the nature of solving mathematical problems might lead to a 

deemphasis of the rigid requirements on the writing of two-column proofs in some 

classrooms. 

Students’ perceptions of proofs. The first part of the course sets the tone for 

students’ perceptions of proofs. With this in mind, it is advisable to discuss, mostly 

without proofs, those first consequences of the axioms that are needed for later 

work. A few proofs should be given for illustrative purposes; for example, the 
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equality of vertical angles or the equality of the base angles of an isosceles triangle 

and its converse. There are two reasons for the recommendation to begin with only 

a few proofs. The foremost is that a complete logical development is neither possible 

nor desirable. This has to do with the intrinsic complexity of the structure of 

Euclidean geometry (see Greenberg 1993, 1–146). A second reason is the usual 

misconception that such elementary proofs are easy for beginners. Working on the 

level of axioms is actually more difficult for beginners than working with the theorems 

that come a little later in the logical development. This difficulty occurs because, on 

the one hand, working with axioms requires a heavy reliance on formal logic without 

recourse to intuition—in fact often in spite of one’s intuition. On the other hand, 

working on the level of axioms does not usually have a clear direction or goal, and it 

is difficult to convince students to learn something without a clearly stated goal. If 

one so desires, students can always be made to go back to prove the elementary 

theorems after they have already developed a firm grasp of proof techniques. 

Structured work with proofs. Students’ first attempts at proofs need to be 

structured with care. At the beginning of the development of this skill, instead of 

asking students to do many trivial proofs after showing them the proofs of two or 

three easy theorems, it might be a good strategy to proceed as follows: 

1. As early as possible, the students might be shown a generous number of proofs 

of substantive theorems so that they can gain an understanding of what a proof 

is before they write any proofs themselves. 

2. As a prelude to constructing proofs themselves, the students might provide 

reasons for some of the steps in the sample (substantive) proofs instead of 

constructing extremely easy proofs on their own. 

3. After an extended exposure to nontrivial proofs, students might be asked to give 

proofs of simple corollaries of substantive theorems. 
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The reason for steps 2 and 3 is to make students, from the beginning, associate 

proofs with real mathematics rather than perform a formal ritual. This goal can be 

accomplished with the use of local axiomatics; that is, if the proof of a theorem 

makes use of facts not previously proved, let these facts be stated clearly before the 

proof. These facts need not be previously proven but should ideally be sufficiently 

plausible even without a proof. Extensive use of local axiomatics would make 

possible, sufficiently early in the course, the presentation of interesting but perhaps 

advanced theorems. In Appendix D, “Resource for Secondary School Teachers: 

Circumcenter, Orthocenter, and Centroid,” the ideas in steps 2 and 3 are put to use 

to demonstrate how they might work. 

Development of geometric intuition. The following geometric constructions are 

recommended to develop students’ geometric intuition. (In this context construction 

means “construction with straightedge and compass.”) It is understood that all of 

them will be proved at some time during the course of study. The constructions that 

students should be able to do are: 

• Bisecting an angle 

• Constructing the perpendicular bisector of a line segment 

• Constructing the perpendicular to a line from a point on the line and from a point 

not on the line 

• Duplicating a given angle 

• Constructing the parallel to a line through a point not on the line 

• Constructing the circumcircle of a triangle 

• Dividing a line segment into n equal parts 

• Constructing the tangent to a circle from a point on the circle 

• Constructing the tangents to a circle from a point not on the circle 

• Locating the center of a given circle 
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• Constructing a regular n-gon on a given circle for n = 3, 4, 5, 6  

Use of technology. This is the place to add a word about the use of technology. 

The availability of good computer software makes the accurate drawing of geometric 

figures far easier. Such software can enhance the experience of making the 

drawings in the constructions described previously. In addition, the ease of making 

accurate drawings encourages the formulation and exploration of geometric 

conjectures. For example, it is now easy to convince oneself that the intersections of 

adjacent angle trisectors of the angles of a triangle are most likely the vertices of an 

equilateral triangle (Morley’s theorem). If students do have access to such software, 

the potential for a more intense mathematical encounter is certainly there. In 

encouraging students to use the technology, however, one should not lose sight of 

the fact that the excellent visual evidence thus provided must never be taken as a 

replacement for understanding. For example, software may give the following 

heuristic evidence for why the sum of the angles of a triangle is 180°. When any 

three points on the screen are clicked, a triangle with these three points as vertices 

appears. When each angle is clicked again, three numbers will appear that give the 

angle measurement of each angle. When these numbers are added, 180° will be the 

answer. Furthermore, no matter the shape of the triangle, the result will always be 

the same. 

While such exercises may boost one’s belief in the validity of the theorem about 

the sum of the angles, it must be recognized that these angle measurements have 

added nothing to one’s understanding of why this theorem is true. Furthermore, if 

one really wants to have a hands-on experience with angle measurements in order 

to check the validity of this theorem, the best way is to do it painstakingly by hand on 

paper. Morley’s theorem, mentioned earlier, is another illustration of the same 
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principle: evidence cannot replace proofs. The computer program would not reveal 

the reason the three points are always the vertices of an equilateral triangle. 

Introduction to the coordinate plane. Students should know that the coordinate 

plane provides a concrete example that satisfies all the axioms of Euclidean 

geometry if the lines are defined as the graphs of linear equations ax + by = c, with 

at least one of a and b not equal to zero. Lines a1 x + b1 y = c1 and a2 x + b2 y = c2 

are defined as parallel if (a1, b1) is proportional to (a2, b2), but (a1, b1, c1) is not 

proportional to (a2, b2, c2). The verification of the axioms is straightforward. 
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Algebra II expands on the mathematical content of Algebra I and geometry. There 

is no single unifying theme. Instead, many new concepts and techniques are 

introduced that will be basic to more advanced courses in mathematics and the 

sciences and useful in the workplace. In general terms the emphasis is on abstract 

thinking skills, the function concept, and the algebraic solution of problems in various 

content areas. 

Absolute Value and Inequalities 

The study of absolute value and inequalities is extended to include simultaneous 

linear systems; it paves the way for linear programming—the maximization or 

minimization of linear functions over regions defined by linear inequalities. The 

relevant standards are: 

1.0 Students solve equations and inequalities involving absolute value. 

2.0 Students solve systems of linear equations and inequalities (in two or three 

variables) by substitution, with graphs, or with matrices. 

The concept of Gaussian elimination should be introduced for 2 x 2 matrices and 

simple 3 x 3 ones. The emphasis is on concreteness rather than on generality. 

Concrete applications of simultaneous linear equations and linear programming to 

problems in daily life should be brought out, but there is no need to emphasize linear 

programming at this stage. While it would be inadvisable to advocate the use of 

graphing calculators all the time, such calculators are helpful for graphing regions in 

connection with linear programming once the students are past the initial stage of 

learning. 
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At this point of students’ mathematical development, knowledge of complex 

numbers is indispensable: 

5.0 Students demonstrate knowledge of how real and complex numbers are 

related both arithmetically and graphically. In particular, they can plot 

complex numbers as points in the plane. 

6.0 Students add, subtract, multiply, and divide complex numbers. 

From the beginning it is important to stress the geometric aspect of complex 

numbers; for example, the addition of two complex numbers can be shown in terms 

of a parallelogram. And the key difference between real and complex numbers 

should be pointed out: The complex numbers cannot be linearly ordered in the same 

way as real numbers are (the real line). 

Polynomials and Rational Expressions 

The next general technique is the formal algebra of polynomials and rational 

expressions: 

3.0 Students are adept at operations on polynomials, including long division.  

4.0 Students factor polynomials representing the difference of squares, perfect 

square trinomials, and the sum and difference of two cubes. 

7.0 Students add, subtract, multiply, divide, reduce, and evaluate rational 

expressions with monomial and polynomial denominators and simplify 

complicated rational expressions, including those with negative exponents in 

the denominator. 

The importance of formal algebra is sometimes misunderstood. The argument 

against it is that it has insufficient real-world relevance and it leads easily to an 

overemphasis on mechanical drills. There seems also to be an argument for placing 
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the study of exponential function ahead of polynomials in school mathematics 

because exponential functions appear in many real-world situations (compound 

interest, for example). There is a need to affirm the primacy of polynomials in high 

school mathematics and the importance of formal algebra. The potential for abuse in 

Standard 3.0 is all too obvious, but such abuse would be realized only if the 

important ideas implicit in it are not brought out. These ideas all center on the 

abstraction and hence on the generality of the formal algebraic operations on 

polynomials. Thus the division algorithm (long division) leads to the understanding of 

the roots and factorization of polynomials. The factor theorem, which states that 

(x−a) divides a polynomial p(x) if and only if p(a) = 0, should be proved; and students 

should know the proof. The rational root theorem could be proved too, but only if 

there is enough time to explain it carefully; otherwise, many students would be 

misled into thinking that all the roots of a polynomial with integer coefficients are 

determined by the divisibility properties of the first and last coefficients. 

It would be natural to first prove the division algorithm and the factor theorem for 

polynomials with real coefficients. But it would be vitally important to revisit both and 

to point out that the same proofs work, verbatim, for polynomials with complex 

coefficients. This procedure not only provides a good exercise on complex numbers 

but also nicely illustrates the built-in generality of formal algebra. 

Two remarks about Standard 7.0 are relevant: (1) a rational expression should be 

treated formally, and its function-theoretic aspects (the domain of definition, for 

example) need not be emphasized at this juncture; and (2) fractional exponents of 

polynomials and rational expressions should be carefully discussed here. 
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The first high point of the course is the study of quadratic (polynomial) functions:  

8.0 Students solve and graph quadratic equations by factoring, completing the 

square, or using the quadratic formula. Students apply these techniques in 

solving word problems. They also solve quadratic equations in the complex 

number system.  

9.0 Students demonstrate and explain the effect that changing a coefficient has 

on the graph of quadratic functions; that is, students can determine how the 

graph of a parabola changes as a, b, and c vary in the equation y = a(x−b)2 

+ c. 

10.0 Students graph quadratic functions and determine the maxima, mimima, and 

zeros of the function. 

What distinguishes Standard 8.0 from the same topic in Algebra I is the newly 

acquired generality of the quadratic formula: It now solves all equations ax2 + bx + c 

= 0 with real a, b, and c regardless of whether or not b2 – 4ac < 0, and it does so 

even when a, b, and c are complex numbers. Again it should be stressed that the 

purely formal derivation of the quadratic formula makes it valid for any object a, b, 

and c as long as the usual arithmetic operations on numbers can be applied to them. 

In particular, it makes no difference whether the numbers are real or complex. This 

premise illustrates the built-in generality of formal algebra. Students need to know 

every aspect of the proof of the quadratic formula. They should also be made aware 

(1) that with the availability of complex numbers, any quadratic polynomial ax2 + bx 

+ c = 0 with real or complex a, b, and c can be factored into a product of two linear 

polynomials with complex coefficients; (2) that c is the product of the roots and −b is 

their sum; and (3) that if a, b, and c are real and the roots are complex, then the 

roots are a conjugate pair. 
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Standard 9.0 brings the study of quadratic polynomials to a new level by regarding 

them as a function. This new point of view leads to the exact location of the 

maximum, minimum, and zeros of this function by use of the quadratic formula (or, 

more precisely, by completing the square) without recourse to calculus. The practical 

applications of these results are as important as the theory. 

Another application of completing the square is given in Standard 17.0, through 

which students learn, among other things, how to bring a quadratic polynomial in x 

and y without an xy term to standard form and recognize whether it represents an 

ellipse or a hyperbola. 

Logarithms 

A second high point of Algebra II is the introduction of two of the basic functions in 

all of mathematics: ex and log x.  

11.0 Students prove simple laws of logarithms. 

11.1. Students understand the inverse relationship between exponents and 

logarithms and use this relationship to solve problems involving 

logarithms and exponents.  

11.2. Students judge the validity of an argument according to whether the 

properties of real numbers, exponents, and logarithms have been 

applied correctly at each step. 

12.0 Students know the laws of fractional exponents, understand exponential 

functions, and use these functions in problems involving exponential growth 

and decay. 

15.0 Students determine whether a specific algebraic statement involving rational 

expressions, radical expressions, or logarithmic or exponential functions is 

sometimes true, always true, or never true. 
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The theory should be done carefully, and students are responsible for the proofs 

of the laws of exponents for am where m is a rational number and of the basic 

properties of loga x : loga (x1 x2) = loga (x1) + loga (x2), loga (1/x) = −loga x, and 

loga(xr) = r loga x, where r is a rational number (Standard 15.0). The functional 

relationships loga(ax) = x and alog(t) = t where a is the base of the log function in the 

second equation should be taught without a detailed discussion of inverse functions 

in general, as students are probably not ready for it yet. Practical applications of this 

topic to growth and decay problems are legion. 

Arithmetic and Geometric Series 

A third high point of Algebra II is the study of arithmetic and geometric series: 

23.0 Students derive the summation formulas for arithmetic series and for both 

finite and infinite geometric series. 

The geometric series, finite and infinite, is of great importance in mathematics and 

the sciences, physical and social. Students should be able to recognize this series 

under all its guises and compute its sum with ease. In particular, they should know 

by heart the basic identity that underlies the theory of geometric series:  

xn − yn = (x − y)(xn−1+ xn–2 y + ⋅ ⋅ ⋅ + xyn–2 + yn−1). 

This identity gives another example of the utility of formal algebra, and the identity 

is used in many other places as well (the differentiation of monomials, for example). 

It should be mentioned that while it is tempting to discuss the arithmetic and 

geometric series using the sigma notation 

  
∑
i = 1

n

,  

it would be advisable to resist this temptation so that the students are not 

overburdened. 
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Binomial Theorem 6369 
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Students should learn the binomial theorem and how to use it: 

20.0 Students know the binomial theorem and use it to expand binomial 

expressions that are raised to positive integer powers. 

18.0 Students use fundamental counting principles to compute combinations and 

permutations. 

19.0 Students use combinations and permutations to compute probabilities. 

In this context the applications almost come automatically with the theory. 

Finally, Standards 16.0 (geometry of conic sections), 24.0 (composition of 

functions and inverse functions), and 25.0 may be taken up if time permits. 
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Chapter 3: Trigonometry (Grades 8-12) 6379 
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Trigonometry uses the techniques that students have previously learned from the 

study of algebra and geometry. The trigonometric functions studied are defined 

geometrically rather than in terms of algebraic equations, but one of the goals of this 

course is to acquaint students with a more algebraic viewpoint toward these 

functions. 

Students should have a clear understanding that the definition of the trigonometric 

functions is made possible by the notion of similarity between triangles. 

A basic difficulty confronting students is one of superabundance: There are six 

trigonometric functions and seemingly an infinite number of identities relating to 

them. The situation is actually very simple, however. Sine and cosine are by far the 

most important of the six functions. Students must be thoroughly familiar with their 

basic properties, including their graphs and the fact that they give the coordinates of 

every point on the unit circle (Standard 2.0). Moreover, three identities stand out 

above all others: sin2 x + cos2 x =1 and the addition formulas of sine and cosine: 

3.0 Students know the identity cos2 (x) + sin2 (x) =1: 

3.1. Students prove that this identity is equivalent to the Pythagorean 

theorem (i.e., students can prove this identity by using the Pythagorean 

theorem and, conversely, they can prove the Pythagorean theorem  

as a consequence of this identity). 

3.2. Students prove other trigonometric identities and simplify others by using 

the identity cos2 (x) + sin2 (x) =1. For example, students use this identity 

to prove that sec2 (x) = tan2 (x) + 1. 
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10.0 Students demonstrate an understanding of the addition formulas for sines 

and cosines and their proofs and can use those formulas to prove and/or 

simplify other trigonometric identities. 
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Students should know the proofs of these addition formulas. An acceptable 

approach is to use the fact that the distance between two points on the unit circle 

depends only on the angle between them. Thus, suppose that angles a and b satisfy 

0 < a < b, and let A and B be points on the unit circle making angles a and b with the 

positive x-axis. Then A = (cos a, sin a), B = (cos b, sin b), and the distance d(A, B) 

from A to B satisfies the equation: 

d(A, B)2 = (cos b − cos a)2 + (sin b − sin a)2 

On the other hand, the angle from A to B is (b − a), so that the distance from the 

point C = (cos (b − a), sin (b − a)) to (1, 0) is also d(A, B) because the angle from C 

to (1, 0) is (b − a) as well. Thus: 

d(A, B)2 = (cos (b − a) − 1)2 + sin2 (b − a) 

Equating the two gives the formula: 

cos (b − a) = cos a cos b + sin a sin b 

From this formula both the sine and cosine addition formulas follow easily. 

Students should also know the special cases of these addition formulas in the 

form of half-angle and double-angle formulas of sine and cosine (Standard 11.0). 

These are important in advanced courses, such as calculus. Moreover, the addition 

formulas make possible the rewriting of trigonometric sums of the form Asin(x) + 

Bcos(x) as Csin(x + D) for suitably chosen constants C and D, thereby showing that 

such a sum is basically a displaced sine function. This fact should be made known to 

students because it is important in the study of wave motions in physics and 

engineering. 
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Students should have a moderate amount of practice in deriving trigonometric 

identities, but identity proving is no longer a central topic. 

Of the remaining four trigonometric functions, students should make a special 

effort to get to know tangent, its domain of definition (−π/2, π/2), and its graph 

(Standard 5.0). The tangent function naturally arises because of the standard: 

7.0 Students know that the tangent of the angle that a line makes with the x-axis 

is equal to the slope of the line. 

Because trigonometric functions arose historically from computational needs in 

astronomy, their practical applications should be stressed (Standard 19.0). Among 

the most important are: 

13.0 Students know the law of sines and the law of cosines and apply those laws 

to solve problems. 

14.0 Students determine the area of a triangle, given one angle and the two 

adjacent sides. 

These formulas have innumerable practical consequences. 

Complex numbers can be expressed in polar forms with the help of trigonometric 

functions (Standard 17.0). The geometric interpretations of the multiplication and 

division of complex numbers in terms of the angle and modulus should be 

emphasized, especially for complex numbers on the unit circle. Mention should be 

made of the connection between the nth roots of 1 and the vertices of a regular n-

gon inscribed in the unit circle: 

18.0 Students know DeMoivre’s theorem and can give nth roots of a complex 

number given in polar form. 
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This discipline combines many of the trigonometric, geometric, and algebraic 

techniques needed to prepare students for the study of calculus and other advanced 

courses. It also brings a measure of closure to some topics first brought up in earlier 

courses, such as Algebra II. The functional viewpoint is emphasized in this course. 

Mathematical Induction 

The eight standards are fairly self-explanatory. However, some comments on four 

of them may be of value. The first is mathematical induction: 

3.0 Students can give proofs of various formulas by using the technique of 

mathematical induction. 

This basic technique was barely hinted at in Algebra II; but at this level, to 

understand why the technique works, students should be able to use the technique 

fluently and to learn enough about the natural numbers. They should also see 

examples of why the step to get the induction started and the induction step itself are 

both necessary. Among the applications of the technique, students should be able to 

prove by induction the binomial theorem and the formulas for the sum of squares 

and cubes of the first n integers. 

Roots of Polynomials 

Roots of polynomials were not studied in depth in Algebra II, and the key theorem 

about them was not mentioned: 

4.0 Students know the statement of, and can apply, the fundamental theorem of 

algebra. 
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This theorem should not be proved here because the most natural proof requires 

mathematical techniques well beyond this level. However, there are “elementary” 

proofs that can be made accessible to some of the students. In a sense this theorem 

justifies the introduction of complex numbers. An application that should be 

mentioned and proved on the basis of the fundamental theorem of algebra is that for 

polynomials with real coefficients, complex roots come in conjugate pairs. 

Consequently, all polynomials with real coefficients can be written as the product of 

real quadratic polynomials. The quadratic formula should be reviewed from the 

standpoint of this theorem. 

Conic Sections 

The third area is conic sections (see Standard 5.0). Students learn not only the 

geometry of conic sections in detail (e.g., major and minor axes, asymptotes, and 

foci) but also the equivalence of the algebraic and geometric definitions (the latter 

refers to the definitions of the ellipse and hyperbola in terms of distances to the foci 

and the definition of the parabola in terms of distances to the focus and directrix). A 

knowledge of conic sections is important not only in mathematics but also in 

classical physics. 

Limits 

Finally, students are introduced to limits:  

8.0 Students are familiar with the notion of the limit of a sequence and the limit of 

a function as the independent variable approaches a number or infinity. They 

determine whether certain sequences converge or diverge. 

This standard is an introduction to calculus. The discussion should be intuitive and 

buttressed by much numerical data. The calculator is useful in helping students 

explore convergence and divergence and guess the limit of sequences. If desired, 
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the precise definition of limit can be carefully explained; and students may even be 

made to memorize it, but it should not be emphasized. For example, students can be 

taught to prove why for linear functions f ( x )  

6499 

6500 

  
lim
x→ a

f (x) = f (a)
 for any a, but it is 

more likely a ritual of manipulating ε ’s and δ’s in a special situation than a real 

understanding of the concept. The time can probably be better spent on other proofs 

(e.g., mathematical induction). 
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This discipline is an introduction the study of probability, interpretation of data, and 

fundamental statistical problem solving. Mastery of this academic content will 

provide students with a solid foundation in probability and facility in processing 

statistical information.  

Some of the topics addressed review material found in the standards for the 

earlier grades and reflect that this content should not disappear from the curriculum. 

These topics include the material with respect to measures of central tendency and 

the various display methods in common use, as stated in these standards: 

6.0 Students know the definitions of the mean, median, and mode of a 

distribution of data and can compute each in particular situations.  

8.0 Students organize and describe distributions of data by using a number of 

different methods, including frequency tables, histograms, standard line and 

bar graphs, stem-and-leaf displays, scatterplots, and box-and-whisker plots.  

In the early grades students also receive an introduction to probability at a basic 

level. The next topic will expand on this base so that students can find probabilities 

for multiple discrete events in various combinations and sequences. The standards 

in Algebra II related to permutations and combinations and the fundamental counting 

principles are also reflective of the content in these standards:  

1.0 Students know the definition of the notion of independent events and can use 

the rules for addition, multiplication, and complementation to solve for 

probabilities of particular events in finite sample spaces.  

2.0 Students know the definition of conditional probability and use it to solve for 

probabilities in finite sample spaces.  
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3. 0 Students demonstrate an understanding of the notion of discrete random 

variables by using them to solve for the probabilities of outcomes, such as 

the probability of the occurrence of five heads in 14 coin tosses.  
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The most substantial new material in this discipline is found in Standard 4.0: 

4.0 Students are familiar with the standard distributions (normal, binomial, and 

exponential) and can use them to solve for events in problems in which the 

distribution belongs to those families.  

Instruction typically flows from the counting principles for discrete binomial 

variables to the rules for elaborating probabilities in binomial distributions. The fact 

that these probabilities are simply the terms in a binomial expansion provides a 

strong link to Algebra II and the binomial theorem. From this base, basic probability 

topics can be expanded into the treatment of these standard distributions. In the 

binomial case students should now be able to define the probability for a range of 

possible outcomes for a set of events based on a single-event probability and thus to 

develop better understanding of probability and density functions. 

The normal distribution, which is the limiting form of a binomial distribution, is 

typically introduced next. Students are not to be expected to integrate this 

distribution, but they can answer probability questions based on it by referring to 

tabled values. Students need to know that the mean and the standard deviation are 

parameters for this distribution. Therefore, it is important to understand variance, 

based on averaged squared deviation, as an index of variability and its importance in 

normal distributions, as stated in these standards: 

5.0 Students determine the mean and the standard deviation of a normally 

distributed random variable.  

7.0 Students compute the variance and the standard deviation of a distribution of 

data.  

 299



DRAFT: January 28, 2005  DRAFT: January 28, 2005 

Standard 4.0 also includes exponential distributions with applications, for example, 

in lifetime of service and radioactive decay problems. Including this distribution 

acquaints students with probability calculations for other types of processes. Here, 

students learn that the distribution is defined by a scale parameter, and they learn 

simple probability computations based on this parameter. 
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